Preprints & Submitted Articles
[48] “Improving variational Monte Carlo optimization by avoiding statistically
difficult parameters”
Scott M. Garner and E. Neuscamman, arXiv 2302.03078 (2023) [link]
2025
[47] “Reducing the Cost of Energy Differences in Variational Monte Carlo with Spotlight Sampling”
Sonja Bumann and E. Neuscamman, J. Chem. Theory Comput. 21, 22 (2025) DOI: 10.1021/acs.jctc.5c01232
[46] “An excitation matched local correlation approach to excited state specific perturbation theory”
Rachel Clune and E. Neuscamman, J. Chem. Phys. 163, 094109 (2025) DOI: 10.1063/5.0280479
[45] “Selectively enabling linear combination of atomic orbital coefficients to improve linear method optimizations in variational Monte Carlo”
Trine K. Quady and E. Neuscamman, Mol. Phys. e2579877 (2025) DOI: 10.1080/00268976.2025.2579877
[44] “Aufbau suppressed coupled cluster as a post-linear-response method”
Trine K. Quady, Harrison Tuckman, and E. Neuscamman, J. Chem. Theory Comput. 21, 18 (2025) DOI: 10.1021/5c01027
[43] “Fast and Accurate Charge Transfer Excitations via Nested Aufbau Suppressed Coupled Cluster”
Harrison Tuckman and E. Neuscamman, J. Phys. Chem. Lett. 16, 31 (2025) DOI: 10.1021/acs.jpclett.5c01576
[42] “Vibrations and the passage through a diabolic point in the anthracene dimer”
A. Lemmens, N. Dias, Harrison Tuckman, E. Neuscamman, and M. Ahmed, J. Chem. Phys. 163, 024318 (2025) DOI: 10.1063/5.0273753
[41] “Improving Aufbau Suppressed Coupled Cluster through Perturbative Analysis”
Harrison Tuckman, Ziheng Ma, and E. Neuscamman, J. Chem. Theory Comput. 21, 3993 (2025) DOI: 10.1021/acs.jctc.5c00096
[40] “Method-independent cusps for atomic orbitals in quantum Monte Carlo”
Trine K. Quady, Sonja Bumann, and E. Neuscamman, J. Chem. Phys. 162, 104104 (2025) DOI: 10.1063/5.0251922
2024
[39] “Aufbau Suppressed Coupled Cluster Theory for Electronically Excited States”
Harrison Tuckman and E. Neuscamman, J. Chem. Theory Comput. 20, 2761 (2024) DOI: 10.1021/acs.jctc.3c01285
[38] “Spin Coupling Effect on Geometry-Dependent X-ray Absorption of Diradicals”
Scott M. Garner, E. A. Haugen, S. R. Leone and E. Neuscamman, J. Am. Chem. Soc. 146, 2387 (2024)
DOI: 10.1021/jacs.3c08002
2023
[37] “Excited-State-Specific Pseudoprojected Coupled-Cluster Theory”
Harrison Tuckman and E. Neuscamman, J. Chem. Theory Comput. 19, 6160 (2023) DOI: 10.1021/acs.jctc.3c00194
[36] “Exploring Ligand-to-Metal Charge-Transfer States in the Photo-Ferrioxalate System Using Excited-State Specific Optimization”
Lan N. Tran and E. Neuscamman, J. Phys. Chem. Lett. 14, 7454 (2023) DOI: 10.1021/acs.jpclett.3c01308
[35] “Studying excited-state-specific perturbation theory on the Thiel set”
Rachel Clune, Jacqueline A. R. Shea, Tarini S. Hardikar, Harrison Tuckman, and E. Neuscamman, J. Chem. Phys. 158, 224113 (2023) DOI: 10.1063/5.0146975
[34] “A promising intersection of excited-state-specific methods from quantum chemistry and quantum Monte Carlo”
Leon Otis and E. Neuscamman, Wiley Interdiscip. Rev. Comput. Mol. Sci. e1659 (2023) DOI: 10.1002/wcms.1659
[33] “Optimization stability in excited state-specific variational Monte Carlo”
Leon Otis and E. Neuscamman, J. Chem. Theory Comput. 19, 767 (2023) DOI: 10.1021/acs.jctc.2c00642
2022
[32] “Applying generalized variational principles to excited-state-specific complete active space self-consistent field theory”
Rebecca Hanscam and E. Neuscamman, J. Chem. Theory Comput. 18, 6608 (2022) DOI: 10.1021/acs.jctc.2c00639
2020
[31] “A hybrid approach to excited-state-specific variational Monte Carlo and doubly excited states”
Leon Otis, Isaac Craig, and E. Neuscamman, J. Chem. Phys. 153, 234105 (2020) DOI: 10.1063/5.0024572
[30] “A Self-Consistent Field Formulation of Excited State Mean Field Theory”
Tarini S. Hardikar and E. Neuscamman, J. Chem. Phys. 153, 164108 (2020) DOI: 10.1063/5.0019557
[29] “Core Excitations with Excited State Mean Field and Perturbation Theory”
Scott M. Garner and E. Neuscamman, J. Chem. Phys. 153, 154102 (2020) DOI: 10.1063/5.0020595
[28] “Starting-point-independent quantum Monte Carlo calculations of iron oxide”
J. P. Townsend, S. D. Pineda Flores, R. C. Clay III, T. R. Mattsson, E. Neuscamman, L. Zhao, R. E. Cohen, and L. Shulenburger,
Phys. Rev. B 102, 155151 (2020) DOI: 10.1103/PhysRevB.102.155151
[27] “A variational Monte Carlo approach for core excitations”
Scott M. Garner and E. Neuscamman, J. Chem. Phys. 153, 144108 (2020) DOI: 10.1063/5.0020310
[26] “Improving excited state potential energy surfaces via optimal orbital shapes”
Lan N. Tran and E. Neuscamman, J. Phys. Chem. A 124, 8273 (2020) DOI: 10.1021/acs.jpca.0c07593
[25] “An N5-scaling excited-state-specific perturbation theory”
Rachel Clune, Jacqueline A. R. Shea, and E. Neuscamman, J. Chem. Theory Comput. 16, 6132 (2020) DOI: 10.1021/acs.jctc.0c00308
[24] “Excited State Mean-Field Theory without Automatic Differentiation”
Luning Zhao and E. Neuscamman, J. Chem. Phys. 152, 204112 (2020) DOI: 10.1063/5.0003438
[23] “QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion Quantum Monte Carlo”
P. R. C. Kent et al, J. Chem. Phys. 152, 174105 (2020) DOI: 10.1063/5.0004860
[22] “A generalized variational principle with applications to excited state mean field theory”
Jacqueline A. R. Shea, Elise Gwin, and E. Neuscamman, J. Chem. Theory Comput. 16, 1526 (2020) DOI: 10.1021/acs.jctc.9b01105
[21] “Density Functional Extension to Excited-State Mean-Field Theory”
Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 16, 164 (2020) DOI: 10.1021/acs.jctc.9b00530
2019
[20] “Tracking excited states in wave function optimization using density matrices and variational principles”
Lan N. Tran, Jacqueline A. R. Shea, and E. Neuscamman, J. Chem. Theory Comput. 15, 4790 (2019) DOI: 10.1021/acs.jctc.9b00351
[19] “Complementary First and Second Derivative Methods for Ansatz Optimization in Variational Monte Carlo”
Leon Otis and E. Neuscamman, Phys. Chem. Chem. Phys. 21, 14491 (2019) DOI: 10.1039/C9CP02269D
[18] “Variational Excitations in Real Solids: Optical Gaps and Insights into Many-Body Perturbation Theory”
Luning Zhao and E. Neuscamman, Phys. Rev. Lett. 123, 036402 (2019) DOI: 10.1103/PhysRevLett.123.036402
[17] “Excited State Specific Multi-Slater Jastrow Wave Functions”
Sergio D. Pineda Flores and E. Neuscamman, J. Phys. Chem. A 123, 1487 (2019) DOI: 10.1021/acs.jpca.8b10671
[16] “Clean and Convenient Tessellations for Number Counting Jastrow Factors”
Beatrice Van Der Goetz, Leon Otis, and E. Neuscamman, J. Chem. Theory Comput. 15, 1102 (2019) DOI: 10.1021/acs.jctc.8b01139
[15] “Excited-state diffusion Monte Carlo calculations: a simple and efficient two-determinant ansatz”
N. S. Blunt and E. Neuscamman, J. Chem. Theory Comput. 15, 178 (2019) DOI: 10.1021/acs.jctc.8b00879
2018
[14] “Reduced Scaling Hilbert Space Variational Monte Carlo”
Haochuan Wei and E. Neuscamman, J. Chem. Phys. 149, 184106 (2018) DOI: 10.1063/1.5047207
[13] “Communication: A Mean Field Platform for Excited State Quantum Chemistry”
Jacqueline A. R. Shea and E. Neuscamman, J. Chem. Phys. 149, 081101 (2018) DOI: 10.1063/1.5045056
[12] “QMCPACK : An open source ab initio Quantum Monte Carlo package for the electronic structure of atoms, molecules, and solids”
Jeongnim Kim et al, J. Phys. Condens. Matter 30, 195901 (2018) DOI: 10.1088/1361-648X/aab9c3
2017
[11] “Size consistent excited states via algorithmic transformations between variational principles”
Jacqueline A. R. Shea and E. Neuscamman, J. Chem. Theory Comput. 13, 6078 (2017) DOI: 10.1021/acs.jctc.7b00923
[10] “Charge-transfer excited states: Seeking a balanced and efficient wave function ansatz in variational Monte Carlo”
N. S. Blunt and E. Neuscamman, J. Chem. Phys. 147, 194101 (2017) DOI: 10.1063/1.4998197
[9] “Excitation Variance Matching with Limited Configuration Interaction Expansions in Variational Monte Carlo”
Paul J. Robinson, Sergio D. Pineda Flores, and E. Neuscamman, J. Chem. Phys. 147, 164114 (2017) DOI: 10.1063/1.5008743
[8] “A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo”
Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 13, 2604 (2017) DOI: 10.1021/acs.jctc.7b00119
[7] “Suppressing ionic terms with number counting Jastrow factors in real space”
Beatrice Van Der Goetz and E. Neuscamman, J. Chem. Theory Comput. 13, 2035 (2017) DOI: 10.1021/acs.jctc.7b00158
2016
[6] “Amplitude determinant coupled cluster with pairwise doubles”
Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 5841 (2016) DOI: 10.1021/acs.jctc.6b00812
[5] “Communication: Variation After Response in Quantum Monte Carlo”
E. Neuscamman, J. Chem. Phys. 145, 081103 (2016) DOI: 10.1063/1.4961686
[4] “Equation of motion theory for excited states in variational Monte Carlo and the Jastrow antisymmetric geminal power in Hilbert space”
Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 3719 (2016) DOI: 10.1021/acs.jctc.6b00480
[3] “An efficient variational principle for the direct optimization of excited states”
Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 3436 (2016) DOI: 10.1021/acs.jctc.6b00508
[2] “Improved Optimization for the Cluster Jastrow Antisymmetric Geminal Power and Tests on Triple-Bond Dissociations”
E. Neuscamman, J. Chem. Theory Comput. 12, 3149 (2016) DOI: 10.1021/acs.jctc.6b00288
[1] “Subtractive manufacturing with geminal powers: making good use of a bad wave function”
E. Neuscamman, Mol. Phys. 114, 577 (2016) DOI: 10.1080/00268976.2015.1115903
