Publications


Preprints & Submitted Articles


[30]  “Core Excitations with Excited State Mean Field and Perturbation Theory”
 Scott M. Garner and E. Neuscamman, arXiv 2007.00831 (2020) Link

[29]  “A variational Monte Carlo approach for core excitations”
 Scott M. Garner and E. Neuscamman, arXiv 2007.00850 (2020) Link

[28]  “Improving excited state potential energy surfaces via optimal orbital shapes”
 Lan N. Tran and E. Neuscamman, arXiv 2006.09621 (2020) Link

[27]  “A Self-Consistent Field Formulation of Excited State Mean-Field Theory”
 Tarini S. Hardikar and E. Neuscamman, arXiv 2006.02363 (2020) Link

[26]  “Starting-point-independent quantum Monte Carlo calculations of iron oxide”
 J. P. Townsend, S. D. Pineda Flores, R. C. Clay III, T. R. Mattsson, E. Neuscamman, L. Zhao, R. E. Cohen, and L. Shulenburger, submitted to PRB(R) (2020)

[25]  “An N5-scaling excited-state-specific perturbation theory”
 Rachel Clune, Jacqueline A. R. Shea, and E. Neuscamman, arXiv 2003.12923 (2020) Link


2020


[24]  “Excited State Mean-Field Theory without Automatic Differentiation”
 Luning Zhao and E. Neuscamman, J. Chem. Phys. 152, 204112 (2020) DOI: 10.1063/5.0003438

[23]  “QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion Quantum Monte Carlo”
 P. R. C. Kent et al, J. Chem. Phys. 152, 174105 (2020) DOI: 10.1063/5.0004860

[22]  “A generalized variational principle with applications to excited state mean field theory”
 Jacqueline A. R. Shea, Elise Gwin, and E. Neuscamman, J. Chem. Theory Comput. 16, 1526 (2020) DOI: 10.1021/acs.jctc.9b01105

[21]  “Density Functional Extension to Excited-State Mean-Field Theory”
 Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 16, 164 (2020) DOI: 10.1021/acs.jctc.9b00530


2019


[20]  “Tracking excited states in wave function optimization using density matrices and variational principles”
 Lan N. Tran, Jacqueline A. R. Shea, and E. Neuscamman, J. Chem. Theory Comput. 15, 4790 (2019) DOI: 10.1021/acs.jctc.9b00351

[19]  “Complementary First and Second Derivative Methods for Ansatz Optimization in Variational Monte Carlo”
 Leon Otis and E. Neuscamman, Phys. Chem. Chem. Phys. 21, 14491 (2019) DOI: 10.1039/C9CP02269D

[18]  “Variational Excitations in Real Solids: Optical Gaps and Insights into Many-Body Perturbation Theory”
 Luning Zhao and E. Neuscamman, Phys. Rev. Lett. 123, 036402 (2019) DOI: 10.1103/PhysRevLett.123.036402

[17]  “Excited State Specific Multi-Slater Jastrow Wave Functions”
 Sergio D. Pineda Flores and E. Neuscamman, J. Phys. Chem. A 123, 1487 (2019) DOI: 10.1021/acs.jpca.8b10671

[16]  “Clean and Convenient Tessellations for Number Counting Jastrow Factors”
 Brett Van Der Goetz, Leon Otis, and E. Neuscamman, J. Chem. Theory Comput. 15, 1102 (2019) DOI: 10.1021/acs.jctc.8b01139

[15]  “Excited-state diffusion Monte Carlo calculations: a simple and efficient two-determinant ansatz”
 N. S. Blunt and E. Neuscamman, J. Chem. Theory Comput. 15, 178 (2019) DOI: 10.1021/acs.jctc.8b00879


2018


[14]  “Reduced Scaling Hilbert Space Variational Monte Carlo”
 Haochuan Wei and E. Neuscamman, J. Chem. Phys. 149, 184106 (2018) DOI: 10.1063/1.5047207

[13]  “Communication: A Mean Field Platform for Excited State Quantum Chemistry”
 Jacqueline A. R. Shea and E. Neuscamman, J. Chem. Phys. 149, 081101 (2018) DOI: 10.1063/1.5045056

[12]  “QMCPACK : An open source ab initio Quantum Monte Carlo package for the electronic structure of atoms, molecules, and solids”
 Jeongnim Kim et al, J. Phys. Condens. Matter 30, 195901 (2018) DOI: 10.1088/1361-648X/aab9c3


2017


[11]  “Size consistent excited states via algorithmic transformations between variational principles”
 Jacqueline A. R. Shea and E. Neuscamman, J. Chem. Theory Comput. 13, 6078 (2017) DOI: 10.1021/acs.jctc.7b00923

[10]  “Charge-transfer excited states: Seeking a balanced and efficient wave function ansatz in variational Monte Carlo”
 N. S. Blunt and E. Neuscamman, J. Chem. Phys. 147, 194101 (2017) DOI: 10.1063/1.4998197

[9]  “Excitation Variance Matching with Limited Configuration Interaction Expansions in Variational Monte Carlo”
 Paul J. Robinson, Sergio D. Pineda Flores, and E. Neuscamman, J. Chem. Phys. 147, 164114 (2017) DOI: 10.1063/1.5008743

[8]  “A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo”
 Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 13, 2604 (2017) DOI: 10.1021/acs.jctc.7b00119

[7]  “Suppressing ionic terms with number counting Jastrow factors in real space”
 Brett Van Der Goetz and E. Neuscamman, J. Chem. Theory Comput. 13, 2035 (2017) DOI: 10.1021/acs.jctc.7b00158


2016


[6]  “Amplitude determinant coupled cluster with pairwise doubles”
 Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 5841 (2016) DOI: 10.1021/acs.jctc.6b00812

[5]  “Communication: Variation After Response in Quantum Monte Carlo”
E. Neuscamman, J. Chem. Phys. 145, 081103 (2016) DOI: 10.1063/1.4961686

[4] “Equation of motion theory for excited states in variational Monte Carlo and the Jastrow antisymmetric geminal power in Hilbert space”
 Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 3719 (2016) DOI: 10.1021/acs.jctc.6b00480

[3] “An efficient variational principle for the direct optimization of excited states”
Luning Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 3436 (2016) DOI: 10.1021/acs.jctc.6b00508

[2] “Improved Optimization for the Cluster Jastrow Antisymmetric Geminal Power and Tests on Triple-Bond Dissociations”
E. Neuscamman, J. Chem. Theory Comput. 12, 3149 (2016) DOI: 10.1021/acs.jctc.6b00288

[1]  “Subtractive manufacturing with geminal powers: making good use of a bad wave function”
E. Neuscamman, Mol. Phys. 114, 577 (2016) DOI: 10.1080/00268976.2015.1115903